Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Environ Pollut ; 351: 124008, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641038

RESUMEN

Dissimilatory iron-reducing bacteria (DIRB) affect the geochemical cycling of redox-sensitive pollutants in anaerobic environments by controlling the transformation of Fe morphology. The anaerobic oxidation of antimonite (Sb(III)) driven by DIRB and Fe(III) oxyhydroxides interactions has been previously reported. However, the oxidative species and mechanisms involved remain unclear. In this study, both biotic phenomenon and abiotic verification experiments were conducted to explore the formed oxidative intermediates and related processes that lead to anaerobic Sb(III) oxidation accompanied during dissimilatory iron reduction. Sb(V) up to 2.59 µmol L-1 combined with total Fe(II) increased to 188.79 µmol L-1 when both Shewanella oneidensis MR-1 and goethite were present. In contrast, no Sb(III) oxidation or Fe(III) reduction occurred in the presence of MR-1 or goethite alone. Negative open circuit potential (OCP) shifts further demonstrated the generation of interfacial electron transfer (ET) between biogenic Fe(II) and goethite. Based on spectrophotometry, electron spin resonance (ESR) test and quenching experiments, the active ET production labile Fe(III) was confirmed to oxidize 94.12% of the Sb(III), while the contribution of other radicals was elucidated. Accordingly, we proposed that labile Fe(III) was the main oxidative species during anaerobic Sb(III) oxidation in the presence of DIRB and that the toxicity of antimony (Sb) in the environment was reduced. Considering the prevalence of DIRB and Fe(III) oxyhydroxides in natural environments, our findings provide a new perspective on the transformation of redox sensitive substances and build an eco-friendly bioremediation strategy for treating toxic metalloid pollution.

2.
Sci Bull (Beijing) ; 69(7): 863-866, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38296694
3.
Anal Chim Acta ; 1288: 342120, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220269

RESUMEN

The environmental behavior of arsenic (As) has garnered significant attention due to its hazardous nature. The fate of As often couples with sulfide, thus co-detecting arsenic and sulfide on-site is crucial for comprehending their geochemical interactions. While electrochemical methods are suitable for on-site chemical analysis, there currently exists no electrode capable of simultaneously detecting both arsenic and sulfide. To address this, we developed a dual-metal electrode consisting of iron oxide-encased carbon cloth loaded with gold nanoparticles (Au/FeOx/CC) using the electrochemical deposition method. This electrode enables square wave stripping voltammetry (SWASV) binary detection of As and sulfide. Comparison experiments reveal that the reaction sites for sulfide primarily reside on FeOx, while the interface synergy of iron oxide and gold nanoparticles enhances the response to arsenite (AsIII). Arsenate (AsV) is directly reduced to As0 on Fe0, obviating the need for an external reducing agent. The electrode achieves detection limits of 1.5 µg/L for AsV, 0.25 µg/L for AsIII, and 11.6 µg/L for sulfide at mild conditions (pH 7.8). Field validation was conducted in the Tengchong geothermal hot spring region, where the electrochemical method exhibited good correlation with the standard methods: Total As (r = 0.978 vs. ICP-MS), AsIII (r = 0.895 vs. HPLC-ICP-MS), and sulfide (r = 0.983 vs. colorimetric method). Principal component analysis and correlation analysis suggest that thioarsenic, could potentially be positive interferents for AsIII. However, this interference can be anticipated and mitigated by monitoring the abundance of sulfide. The study provides new insights and problems for the electrochemical detection of coexisted As and sulfide.

4.
Environ Sci Technol ; 58(4): 1934-1943, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38180751

RESUMEN

Antimony (Sb) biomethylation is an important but uninformed process in Sb biogeochemical cycling. Methylated Sb species have been widely detected in the environment, but the gene and enzyme for Sb methylation remain unknown. Here, we found that arsenite S-adenosylmethionine methyltransferase (ArsM) is able to catalyze Sb(III) methylation. The stepwise methylation by ArsM forms mono-, di-, and trimethylated Sb species. Sb(III) is readily coordinated with glutathione, forming the preferred ArsM substrate which is anchored on three conserved cysteines. Overexpressing arsM in Escherichia coli AW3110 conferred resistance to Sb(III) by converting intracellular Sb(III) into gaseous methylated species, serving as a detoxification process. Methylated Sb species were detected in paddy soil cultures, and phylogenetic analysis of ArsM showed its great diversity in ecosystems, suggesting a high metabolic potential for Sb(III) methylation in the environment. This study shows an undiscovered microbial process methylating aqueous Sb(III) into the gaseous phase, mobilizing Sb on a regional and even global scale as a re-emerging contaminant.


Asunto(s)
Arsénico , Arsenitos , Nostoc , Arsenitos/metabolismo , S-Adenosilmetionina/metabolismo , Antimonio , Arsénico/química , Nostoc/metabolismo , Ecosistema , Filogenia , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo
5.
J Hazard Mater ; 465: 133157, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38064943

RESUMEN

The rise and development of electric vehicles have brought much attention to the recycling of lithium-ion batteries (LIBs). However, the recovery of critical metals from LiNixCoyMn1-x-yO2 (NCM) is a challenge, especially for the nickel and cobalt, which have similar chemical properties. Here, a novel ternary deep eutectic solvent (DES) composed of choline chloride, ethylene glycol, and tartaric acid was proposed. Our protocol of DES synthesis, nickel separation, and leaching of cobalt and manganese were integrated into one step, which significantly simplified the recovery process. The crystallization occurring during DES leaching was subjected to detailed investigation. The lithium, nickel, and cobalt were sequentially separated as Li2CO3, NiO, and Co(OH)2 by anterior formic acid leaching and posterior electrodeposition. After electrodeposition, DES was reused. This work provides new ideas for the sequential separation of critical metals from NCM and has great application prospects.

6.
Small ; 20(14): e2306117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37994262

RESUMEN

The reduction of carbon dioxide to valuable chemicals through enzymatic processes is regarded as a promising approach for the reduction of carbon dioxide emissions. In this study, an in vitro multi-enzyme cascade pathway is constructed for the conversion of CO2 into dihydroxyacetone (DHA). This pathway, known as FFFP, comprises formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), formolase (FLS), and phosphite dehydrogenase (PTDH), with PTDH serving as the critical catalyst for regenerating the coenzyme NADH. Subsequently, the immobilization of the FFFP pathway within the hydrogen-bonded organic framework (HOF-101) is accomplished in situ. A 1.8-fold increase in DHA yield is observed in FFFP@HOF-101 compared to the free FFFP pathway. This enhancement can be explained by the fact that within FFFP@HOF-101, enzymes are positioned sufficiently close to one another, leading to the elevation of the local concentration of intermediates and an improvement in mass transfer efficiency. Moreover, FFFP@HOF-101 displays a high degree of stability. In addition to the establishment of an effective DHA production method, innovative concepts for the tailored synthesis of fine compounds from CO2 through the utilization of various multi-enzyme cascade developments are generated by this work.


Asunto(s)
Dióxido de Carbono , Formiato Deshidrogenasas , Dióxido de Carbono/química , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/metabolismo , Catálisis , Hidrógeno
7.
J Hazard Mater ; 459: 132293, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37597391

RESUMEN

Microbial electron flow (MEF) is produced from microbial degradation of organic compounds. Regulating MEF to promote organic pollutants biodegradation such as naphthalene (Nap) is a potential way but remains a lack of theoretical basis. Here, we regulated MEF by adding electron acceptor NO3- to achieve 2.6 times increase of Nap biodegradation with cyclodextrin as co-metabolism carbon source. With the NO3- addition, the genes inhibited by Nap of electron generation significantly up-regulated. Especially, key genes ubiD and nahD for anaerobic Nap degradation significantly up-regulated respectively 3.7 times and 6.7 times. Moreover, the ability of electron transfer in MEF was also improved consistent with 7.2 times increase of electron transfer system (ETS) activity. Furthermore, total 60 metagenome-assembled genomes (MAGs) were reconstructed through the metagenomic sequencing data with assembly and binning strategies. Interestingly, it was also first found that the Klebsiella MAG. SDU (Shandong University) 14 had the ability of simultaneous Nap biodegradation and denitrification. Our results firstly offered an effective method of regulating MEF to promote polycyclic aromatic hydrocarbons (PAHs) degradation and simultaneous methanogenesis.


Asunto(s)
Electrones , Nitratos , Humanos , Anaerobiosis , Compuestos Orgánicos , Naftalenos , Interacciones Microbianas , Oxidantes
8.
Environ Sci Technol ; 57(32): 11704-11717, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37515552

RESUMEN

Photoinitiators (PIs) are a family of anthropogenic chemicals used in polymerization systems that generate active substances to initiate polymerization reactions under certain radiations. Although polymerization is considered a green method, its wide application in various commercial products, such as UV-curable inks, paints, and varnishes, has led to ubiquitous environmental issues caused by PIs. In this study, we present an overview of the current knowledge on the environmental occurrence, human exposure, and toxicity of PIs and provide suggestions for future research based on numerous available studies. The residual concentrations of PIs in commercial products, such as food packaging materials, are at microgram per gram levels. The migration of PIs from food packaging materials to foodstuffs has been confirmed by more than 100 reports of food contamination caused by PIs. Furthermore, more than 20 PIs have been detected in water, sediment, sewage sludge, and indoor dust collected from Asia, the United States, and Europe. Human internal exposure was also confirmed by the detection of PIs in serum. In addition, PIs were present in human breast milk, indicating that breastfeeding is an exposure pathway for infants. Among the most available studies, benzophenone is the dominant congener detected in the environment and humans. Toxicity studies of PIs reveal multiple toxic end points, such as carcinogenicity and endocrine-disrupting effects. Future investigations should focus on synergistic/antagonistic toxicity effects caused by PIs coexposure and metabolism/transformation pathways of newly identified PIs. Furthermore, future research should aim to develop "greener" PIs with high efficiency, low migration, and low toxicity.


Asunto(s)
Polvo , Embalaje de Alimentos , Femenino , Humanos , Asia , Benzofenonas/química , Agua
9.
J Hazard Mater ; 454: 131529, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37126902

RESUMEN

Hydroxyl radicals (•OH) production upon the oxygenation of reduced iron minerals at the oxic/anoxic interface has been well recognized. However, little is known in the influencing environmental factors and the involved mechanisms. In this study, much more •OH could be efficiently produced from oxygenation of Fe(II) with 20-200 mM carbonate. Both carbonate concentration and anoxic reaction time play a critical role in •OH production. High carbonate facilitates the formation of Fe(II)high reactivity, i.e., surface-adsorbed and structural Fe(II) with low crystalline that is reactive toward O2 reaction for •OH production, while long anoxic reaction time enables the transfer from Fe(II)high reactivity to Fe(II)low reactivity, i.e., Fe(II) at interior sites with high crystalline, that is hardly oxidized by O2. Furthermore, the degradation pathway of p-nitrophenol (PNP) is highly dependent on the carbonate concentration that low carbonate facilitates •OH oxidation of PNP (80.2%) while high carbonate enhanced O2•- reduction of PNP (48.7%). Besides, carbonate also influences the structural evolution of Fe mineral during oxygenation by retarding its hydrolysis and following transformation. Our finding sheds new light on understanding the important role of oxyanions such as carbonate in iron redox cycles and directing contaminant attenuation in subsurface environment.

10.
J Hazard Mater ; 454: 131460, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37141777

RESUMEN

Soils co-contaminated with heavy metals and organic pollutants are common and threaten the natural environment and human health. Although artificial microbial consortia have advantages over single strains, the mechanism affecting their effectiveness and colonization in polluted soils still requires determination. Here, we constructed two kinds of artificial microbial consortia from the same or different phylogenetic groups and inoculated them into soil co-contaminated with Cr(VI) and atrazine to study the effects of phylogenetic distance on consortia effectiveness and colonization. The residual concentrations of pollutants demonstrated that the artificial microbial consortium from different phylogenetic groups achieved the highest removal rates of Cr(VI) and atrazine. The removal rate of 400 mg/kg atrazine was 100%, while that of 40 mg/kg Cr(VI) was 57.7%. High-throughput sequence analysis showed that the soil bacterial negative correlations, core genera, and potential metabolic interactions differed among treatments. Furthermore, artificial microbial consortia from different phylogenetic groups had better colonization and a more significant effect on the abundance of native core bacteria than consortia from the same phylogenetic group. Our study highlights the importance of phylogenetic distance on consortium effectiveness and colonization and offers insight into the bioremediation of combined pollutants.


Asunto(s)
Atrazina , Contaminantes del Suelo , Humanos , Atrazina/análisis , Filogenia , Consorcios Microbianos , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Bacterias/genética , Bacterias/metabolismo , Suelo , Microbiología del Suelo
11.
Biosens Bioelectron ; 229: 115244, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966618

RESUMEN

Antimonite (SbIII) is a naturally occurring contaminant demanding on-site ultrasensitive detection. The enzyme-based electrochemical (EC) biosensors are promising, but the lack of specific SbIII oxidizing enzymes hindered the past efforts. Herein, we modulated the specificity of arsenite oxidase AioAB toward SbIII by regulating its spatial conformation from tight to loose using the metal-organic framework ZIF-8. The constructed EC biosensor, AioAB@ZIF-8, exhibited the substrate specificity toward SbIII at 12.8 s-1 µM-1, an order of magnitude higher than that of AsIII (1.1 s-1 µM-1). Relaxing AioAB structure in ZIF-8 was evidenced by the break of the S-S bond and the conversion of α helix to the random coil as suggested by Raman spectroscopy. Our AioAB@ZIF-8 EC sensor exhibited a dynamic linear range in 0.041-4.1 µM at a response time of 5 s, and the detection limit at 0.041 µM at a high sensitivity of 1894 nA µM-1. The insights into tuning the specificity of an enzyme shed new light on biosensing metal(loid)s without specific proteins.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Agua , Técnicas Biosensibles/métodos , Estructuras Metalorgánicas/química , Antimonio , Técnicas Electroquímicas/métodos
12.
Environ Pollut ; 319: 121019, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621712

RESUMEN

Arsenate reducing bacteria (AsRB) enhance arsenic (As) release via reducing As(V) to As(III), and As mobility is usually controlled by As(III) re-uptake on in-situ formed secondary iron minerals. The re-uptake of As(III) under groundwater flow conditions significantly impacts the fate and transport of As. Herein, a novel As(V)-reducing bacterium Alkaliphilus IMB was isolated in an As-contaminated soil. Scanning transmission X-ray microscopy showed that dissolved As(V) was mainly bound to the cell walls whereas dissolved As(III) was homogeneously distributed around IMB, indicating that As(V) reduction occurs outside the cell membrane. To explore the effect of IMB on As mobility, IMB was incubated with As-loaded nanoscale zero-valent iron (nZVI) residues under static and flowing conditions. IMB reduced 100% dissolved As(V) to As(III) even in a short contact time (∼1 h) during flowing incubation. The formation of As(III) did not influence As mobility under static condition as evidenced by the comparable concentrations of released As in the presence of IMB (8.5% to total As) and the abiotic control (10% to total As). Biogenic As(III) was re-adsorbed on the solids as shown by the higher ratio of solid-bound As(III) to total As in the presence of IMB (54%) than that in the abiotic control (12%). By contrast, the degree of As(III) re-adsorption was inhibited in the flowing environment, as suggested by the lower As(III) ratio in the solid (31%). This inhibition can be ascribed to the relatively slow adsorption of As(III) compared with the quick reduction of As(V) (∼1 h). Thus, IMB significantly enhanced As release during flowing incubation as shown that 9.8% As was released in the presence of IMB while 2.1% As in the abiotic control. This study found the contrary effect of AsRB on As mobility in static and flowing environments, highlighting the importance of re-adsorption rate of As(III).


Asunto(s)
Arsénico , Hierro , Hierro/química , Arsénico/metabolismo , Oxidación-Reducción , Arseniatos/metabolismo , Adsorción
13.
Langmuir ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607912

RESUMEN

The environmental fate of vanadate (V(V)) is significantly influenced by iron oxide nanocrystals through adsorption. Nevertheless, the underlying driving force controlling V(V) adsorption on hematite (Fe2O3) facets is poorly understood. Herein, V(V) adsorption on the {001}, {110}, and {214} Fe2O3 facets was explored using batch adsorption experiments, spectroscopic studies, and density functional theory (DFT) calculations. Adsorption experiments suggested that the order of V(V) adsorption capacity followed {001} > {110} > {214}. However, the affinity of V(V) to the {001} facet was the weakest, as evidenced by its least resistance to phosphate and sulfate competition. Our extended X-ray absorption fine structure (EXAFS) study indicated the formation of the inner-sphere monodentate mononuclear (1V) complex on the {001} facet and bidentate corner-sharing (2C) complexes on the {110} and {214} facets. Density functional theory (DFT) calculations showed the 1V complex is preferable when the adjacent Fe-Fe atomic distance is significantly larger than the O-O atomic distance of V(V). Otherwise, the 2C complex is formed if the distance is comparable. This determining factor in surface complex formation can be safely extended to other oxyanions that the compatibility in the atomic distance of Fe-Fe on Fe2O3 facets and O-O in oxyanions shapes the surface complex. The molecular-level understanding of the facet-dependent adsorption mechanism provides the basis for the design and application of oxyanion adsorbents.

14.
Appl Environ Microbiol ; 89(1): e0181722, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602327

RESUMEN

Antimony (Sb) is an emerging contaminant, and its on-site speciation analysis is central to the accurate evaluation of its bioavailability and toxicity. The whole-cell biosensors (WCBs) for Sb(III) are promising but challenging due to the lack of Sb(III)-specific recognition components. Here, we constructed a novel Sb(III)-specific WCB using an Sb(III) transcriptional regulator (antR) and its cognate promoter (Pant). To prevent the promoter leakage of Pant, an additional regulatory gene, antR, was inserted downstream of the Sb(III)-inducible promoter, improving the sensitivity of the WCB by an order of magnitude and reaching the detection limit at 0.009 µM, which is lower than the WHO drinking water standard of Sb. Moreover, the WCB with double antR showed a high specificity toward Sb(III) compared with interfering ions at 3 orders of magnitude higher concentrations. This WCB was capable of measuring Sb(III) bioavailability in natural waters and sediments on-site, and its results were not statistically different from the chemical analysis. The insights gained from this work demonstrate that the addition of regulatory genes prevents promoter leakage and improves the sensitivity of WCBs in field applications. IMPORTANCE Antimony (Sb) is a redox-sensitive pollutant ubiquitous in the environment. Sb(III) is dominant in the subsurface and is readily oxidized to less toxic Sb(V) upon exposure to air, and therefore, on-site Sb speciation analysis is essential to evaluate its bioavailability and toxicity. Dissolved Sb concentration and speciation can be determined accurately using on-site chemical sensors, but chemical sensors have difficulty determining the bioavailable Sb(III) that is taken up by the cells. Here, we constructed an Sb(III)-specific whole-cell biosensor (WCB) using double Sb(III) transcriptional regulators (antR) downstream of its cognate promoter Pant. With an additional antR, the sensitivity of the WCB was improved by approximately 10 times, and the promoter leakage commonly found in WCBs was inhibited. Integrated with a tea-bag design, the WCB is able to measure Sb(III) bioavailability in natural water and sediments on-site. This study demonstrates the importance of inserting one more regulatory gene to improve sensitivity.


Asunto(s)
Técnicas Biosensibles , Agua Potable , Contaminantes Ambientales , Antimonio , Agua Potable/análisis , Contaminantes Ambientales/análisis , Técnicas Biosensibles/métodos
15.
Sci Total Environ ; 865: 161077, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36572312

RESUMEN

Seawater rice has been cultivated to ensure food security. The salt-tolerant rice strains are resistant to saline and alkali but may be vulnerable to elevated arsenic (As) near coastal regions. Herein, the saline-alkaline paddy soil was incubated with natural irrigation river for three months to explore the mobility and transformation of As. The incubation results showed that 65 ± 1.2 % solid-bound As(V) was reduced to As(III) within two weeks with the release of As(III) to porewater. The dissolved As(III) was methylated after two weeks, resulting in dimethyl arsenate (DMA) as the dominant As species (87 %-100 %). The elevated As methylation was attributed to the most abundant arsenite methyltransferase gene (arsM) (4.1-10.4 × 107/g dry soil), over three orders of magnitude higher than As redox-related genes. The analysis of arsM operational taxonomic units (OTUs) suggested the highest sequence similarity to Proteobacteria (25.7-39.5 %), Actinobacteria (24.9-30.5 %), Gemmatimonadetes (7.5-11.9 %), Basidiomycota (5.1-12.5 %), and Chloroflexi (4.1-8.7 %). Specifically, Chloroflexi and Actinobacteria are salt-tolerant bacteria, probably responsible for As methylation. The As in grain was within a safe regulatory level, and the dominance of methylated As in porewater did not enhance its accumulation in rice grains.


Asunto(s)
Arsénico , Arsenitos , Oryza , Contaminantes del Suelo , Arsénico/análisis , Metilación , Suelo , Arsenitos/análisis , Bacterias/genética , Contaminantes del Suelo/análisis , Oryza/microbiología
16.
ACS Appl Mater Interfaces ; 14(48): 54313-54319, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36417693

RESUMEN

Surface-enhanced infrared absorption (SEIRA) spectroscopy has been developed for the nondestructive analysis of trace molecules. Herein, we found that ethylene glycol (EG) decorated TiO2 nanosheet exhibits a selective SEIRA effect for molecules with nucleophilic groups, such as -NH2 and -OH. The SEIRA effect was attributed to the chemical mechanism originating from the interactions between the surface EG and the analytes. The enhancement factor was negatively correlated with the electrophilicity index of the analytes (p = 0.004), and the noncovalent bond dominates the interactions between the analytes and EG. The charge distribution analysis revealed that the -CH2 groups of EG exposed on the TiO2 surface are positively charged, attracting the electron-rich groups of the analyte. This attraction concentrates the analyte, redistributes its charge, defines its molecular dipole moment, and thereby enhances the SEIRA effect. The insights gained from this study shed light on developing new SEIRA substrates and emphasized the critical role of surface ligands in SEIRA applications.

17.
Environ Sci Technol ; 56(22): 16473-16482, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36227700

RESUMEN

Elevated arsenic (As) is common in geothermal springs, shaping the evolution of As metabolism genes and As transforming microbes. Herein, genome-level microbial metabolisms and As cycling strategies in Tengchong geothermal springs were demonstrated for the first time based on metagenomic and metatranscriptomic analyses. Sulfur cycling was dominated by Aquificae oxidizing thiosulfate via the sox system, fueling the respiration and carbon dioxide fixation processes. Arsenate reduction via arsC [488.63 ± 271.60 transcripts per million (TPM)] and arsenite efflux via arsB (442.98 ± 284.81 TPM) were the primary detoxification pathway, with most genes and transcripts contributed by the members in phylum Aquificae. A complete arsenotrophic cycle was also transcriptionally active as evidenced by the detection of aioA transcripts and arrA transcript reads mapped onto metagenome-assembled genomes (MAGs) affiliated with Crenarchaeota. MAGs affiliated with Aquificae had great potential of reducing arsenate via arsC and fixing nitrogen and carbon dioxide via nifDHK and reductive tricarboxylic acid (rTCA) cycle, respectively. Aquificae's arsenate reduction potential via arsC was observed for the first time at the transcriptional level. This study expands the diversity of the arsC-based arsenate-reducing community and highlights the importance of Aquificae to As biogeochemistry.


Asunto(s)
Arsénico , Manantiales de Aguas Termales , Metagenómica , Arseniatos , Dióxido de Carbono/metabolismo , Bacterias/genética , Bacterias/metabolismo , Arsénico/metabolismo , Filogenia
18.
Chemosphere ; 309(Pt 1): 136651, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181839

RESUMEN

Soil antimony (Sb) contamination occurs globally due to natural processes and human activities. Total Sb concentration in soils fails to assess its ecological risk, while determined by the concentration of available Sb, which is readily for biological uptake. Available Sb in different soils varied significantly according to soil properties. However, so far it is unknown how soil properties regulate Sb availability, and no model has been established to predict it through soil properties. In this study, 19 soils spiked with antimonite [Sb(III)] were used to identify the major factors controlling Sb availability and establish its predicting models. The results showed that available Sb in different soils varied largely depending on the contents of free aluminum (fAl), free iron (fFe) and electric conductivity (EC), which explained 33%, 27% and 24.9% of the total variation, respectively. During the first 42 days of soil aging, fAl and EC effectively predicted the concentrations of available Sb with R2 = 0.64, while during the later stages (70-150 d) of soil aging, fAl content was the unique parameter employed into the predicting model (R2 = 0.53). These results firstly demonstrate that the content of free aluminum (fAl) is the most important factor regulating Sb availability in soils, although the content of fAl is much lower than that of fFe. This finding can help to develop new remediation materials for Sb-contaminated soils. The prediction models can provide promising tools of assessing the ecological risk. In addition, Sb availability was also affected by the oxidation of Sb(III). After 150 days aging, 1-61% of Sb(III) was oxidized to pentavalent Sb [Sb(V)], which was significantly positively correlated with available Sb, suggesting that Sb(III) oxidization mobilizes Sb in soils. All these findings would help to understand Sb migration and transformation in soils, and to develop new strategies for remediating Sb-contaminated soils.


Asunto(s)
Antimonio , Contaminantes del Suelo , Humanos , Antimonio/análisis , Suelo , Aluminio , Adsorción , Contaminantes del Suelo/análisis , Solubilidad , Hierro
19.
JACS Au ; 2(6): 1435-1442, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35783184

RESUMEN

Microorganisms contribute to the formation of secondary gold (Au) deposits through enzymatic reduction of Au(III) to Au(0). However, the enzyme that catalyzes the reduction of Au(III) remains enigmatic. Here, we identified and characterized a previously unknown Au reductase (GolR) in the cytoplasm of Erwinia sp. IMH. The expression of golR was strongly up-regulated in response to increasing Au(III) concentrations and exposure time. Mutant with in-frame deletion of golR was incapable of reducing Au(III), and the capability was rescued by reintroducing wild-type golR into the mutant strain. The Au(III) reduction was determined to occur in the cytoplasmic space by comparing the TEM images of the wild-type, mutant, and complemented strains. In vitro assays of the purified GolR protein confirmed its ability to reduce Au(III) to Au nanoparticles. Molecular dynamic simulations demonstrated that the hydrophobic cavity of GolR may selectively bind AuCl2(OH)2 -, the predominant auric chloride species at neutral pH. Density functional theory calculations revealed that AuCl2(OH)2 - may be coordinated at the Fe-containing active site of GolR and is probably reduced via three consecutive proton-coupled electron transfer processes. The new class of reductase, GolR, opens the chapter for the mechanistic understanding of Au(III) bioreduction.

20.
Chemosphere ; 302: 134856, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35533944

RESUMEN

Tungsten ore processing residue (TOPR) poses a potential risk due to tungsten (W) leaching. However, the leachability of W in TOPR is not well understood. Herein, the mechanism of W leachability from TOPR was investigated using complementary characterization techniques and leaching experiments. Our X-ray absorption near edge structure (XANES) analysis resolved wolframite in TOPR with a distorted octahedral coordination. The sequential extraction procedure showed that 78% of mobile fraction W in TOPR were bound to Fe oxides, and consequently W leachability was positively correlated with dissolved Fe concentration as evidenced by the general acid neutralizing capacity (GANC) test. The GANC results showed that the W release was negatively correlated with Ca concentration due to CaWO4 precipitation. The in vitro gastrointestinal procedure (IVG) results indicated that organic acids, abundant in fruits and vegetables, significantly improved the bioaccessibility of W from 10% to 20% of total W in TOPR. As a consequence, accidental ingestion of TOPR with a chemical daily intake at 0.8 mg kg-1 day-1 evidenced its emerging concern in the environment and human health.


Asunto(s)
Contaminantes del Suelo , Tungsteno , Humanos , Óxidos/química , Contaminantes del Suelo/análisis , Tungsteno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...